Menghitung Volume Benda Putar Menggunakan Kalkulus
Pengantar
Kalkulus adalah cabang matematika yang mempelajari tentang perubahan dan gerakan. Salah satu aplikasi penting dari kalkulus adalah menghitung volume benda putar. Benda putar adalah suatu bentuk tiga dimensi yang terbentuk ketika suatu kurva dua dimensi diputar mengelilingi suatu garis lurus tertentu.
Menghitung volume benda putar menggunakan kalkulus melibatkan integral. Dalam artikel ini, kita akan membahas 10 soal kalkulus tentang volume benda putar beserta pembahasan dan jawaban lengkapnya.
Menghitung Volume Benda Putar Menggunakan Kalkulus
Volume benda putar dapat dihitung dengan menggunakan metode kalkulus, khususnya integral. Berikut adalah lima soal terkait perhitungan volume benda putar, beserta pembahasan dan jawabannya.
Soal 1
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan:
Kita menggunakan metode cakram (disk method) untuk menghitung volume ini.
Volume dari benda putar adalah:
Di sini, .
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 2
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga .
Pembahasan:
Kita menggunakan metode cakram.
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 3
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva y=x dan di sekitar sumbu-y dari hingga
Pembahasan:
Kita menggunakan metode kulit silinder (shell method).
Volume dari benda putar adalah:
Di sini,
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 4
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan:
Kita menggunakan metode cakram.
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 5
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva di sekitar sumbu-x dari .
Pembahasan:
Kita menggunakan metode cakram.
Gunakan identitas trigonometri .
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 6
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan hingga .
Pembahasan:
Kita menggunakan metode cakram.
Gunakan identitas trigonometri
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 7
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan
Volume dari benda putar adalah:
Untuk menyelesaikan integral ini, kita perlu menggunakan integrasi parsial. Mari kita mulai dengan mendefinisikan substitusi yang akan digunakan dalam integrasi parsial.
Misalkan:
Kemudian, turunan dari adalah:
Dan, integral dari dv adalah:
Dengan menggunakan rumus integrasi parsial , kita peroleh:
Selanjutnya, kita perlu menyederhanakan integral yang tersisa:
Kita dapat menyelesaikan integral ini dengan menggunakan integrasi parsial lagi. Misalkan:
Kemudian, turunan dari u adalah:
Dan, integral dari dv adalah:
v=x
Menggunakan rumus integrasi parsial lagi:
Sehingga:
Dengan ini, kita dapat menyelesaikan integral yang lebih besar:
Evaluasi batas-batas dari hingga :
Evaluasi batasnya:
Dengan demikian, volume benda putar tersebut adalah:
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 8
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan:
Kita menggunakan metode cakram.
Gunakan substitusi , sehingga
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 9
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan:
Kita menggunakan metode cakram.
Gunakan identitas trigonometri
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 10
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-y dari
Pembahasan:
Kita menggunakan metode kulit silinder (shell method).
Volume dari benda putar adalah:
Di sini, kita perlu mengubah batas integral sesuai y. Dari y=x2+1, maka .
Gunakan substitusi , sehingga
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Dengan demikian, kita telah membahas lima soal tentang menghitung volume benda putar menggunakan metode kalkulus. Semoga bermanfaat!
Kesimpulan
Dalam artikel ini, kita telah membahas 10 soal kalkulus tentang volume benda putar. Kita telah mempelajari cara menghitung volume benda putar menggunakan integral, baik dengan memutarkan kurva di sekitar sumbu x maupun sumbu y. Semoga pembahasan di atas dapat membantu Anda memahami konsep ini dengan lebih baik. Jika Anda masih memiliki pertanyaan, jangan ragu untuk menanyakannya.
Menghitung Volume Benda Putar Menggunakan Kalkulus
Pengantar
Kalkulus adalah cabang matematika yang mempelajari tentang perubahan dan gerakan. Salah satu aplikasi penting dari kalkulus adalah menghitung volume benda putar. Benda putar adalah suatu bentuk tiga dimensi yang terbentuk ketika suatu kurva dua dimensi diputar mengelilingi suatu garis lurus tertentu.
Menghitung volume benda putar menggunakan kalkulus melibatkan integral. Dalam artikel ini, kita akan membahas 10 soal kalkulus tentang volume benda putar beserta pembahasan dan jawaban lengkapnya.
Menghitung Volume Benda Putar Menggunakan Kalkulus
Volume benda putar dapat dihitung dengan menggunakan metode kalkulus, khususnya integral. Berikut adalah lima soal terkait perhitungan volume benda putar, beserta pembahasan dan jawabannya.
Soal 1
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan:
Kita menggunakan metode cakram (disk method) untuk menghitung volume ini.
Volume dari benda putar adalah:
Di sini, .
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 2
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga .
Pembahasan:
Kita menggunakan metode cakram.
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 3
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva y=x dan di sekitar sumbu-y dari hingga
Pembahasan:
Kita menggunakan metode kulit silinder (shell method).
Volume dari benda putar adalah:
Di sini,
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 4
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan:
Kita menggunakan metode cakram.
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 5
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva di sekitar sumbu-x dari .
Pembahasan:
Kita menggunakan metode cakram.
Gunakan identitas trigonometri .
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 6
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan hingga .
Pembahasan:
Kita menggunakan metode cakram.
Gunakan identitas trigonometri
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 7
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan
Volume dari benda putar adalah:
Untuk menyelesaikan integral ini, kita perlu menggunakan integrasi parsial. Mari kita mulai dengan mendefinisikan substitusi yang akan digunakan dalam integrasi parsial.
Misalkan:
Kemudian, turunan dari adalah:
Dan, integral dari dv adalah:
Dengan menggunakan rumus integrasi parsial , kita peroleh:
Selanjutnya, kita perlu menyederhanakan integral yang tersisa:
Kita dapat menyelesaikan integral ini dengan menggunakan integrasi parsial lagi. Misalkan:
Kemudian, turunan dari u adalah:
Dan, integral dari dv adalah:
v=x
Menggunakan rumus integrasi parsial lagi:
Sehingga:
Dengan ini, kita dapat menyelesaikan integral yang lebih besar:
Evaluasi batas-batas dari hingga :
Evaluasi batasnya:
Dengan demikian, volume benda putar tersebut adalah:
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 8
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan:
Kita menggunakan metode cakram.
Gunakan substitusi , sehingga
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 9
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-x dari hingga
Pembahasan:
Kita menggunakan metode cakram.
Gunakan identitas trigonometri
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Soal 10
Hitung volume benda yang dihasilkan oleh putaran daerah yang dibatasi oleh kurva dan di sekitar sumbu-y dari
Pembahasan:
Kita menggunakan metode kulit silinder (shell method).
Volume dari benda putar adalah:
Di sini, kita perlu mengubah batas integral sesuai y. Dari y=x2+1, maka .
Gunakan substitusi , sehingga
Jawaban:
Volume benda putar tersebut adalah satuan kubik.
Dengan demikian, kita telah membahas lima soal tentang menghitung volume benda putar menggunakan metode kalkulus. Semoga bermanfaat!
Kesimpulan
Dalam artikel ini, kita telah membahas 10 soal kalkulus tentang volume benda putar. Kita telah mempelajari cara menghitung volume benda putar menggunakan integral, baik dengan memutarkan kurva di sekitar sumbu x maupun sumbu y. Semoga pembahasan di atas dapat membantu Anda memahami konsep ini dengan lebih baik. Jika Anda masih memiliki pertanyaan, jangan ragu untuk menanyakannya.
Tidak ada komentar:
Posting Komentar