Soal Pertidaksamaan Irasional By Bimbel Jakarta Timur



Soal Pertidaksamaan Irasional By Bimbel Jakarta Timur

Pertidaksamaan Irasional adalah bentuk pertidaksamaan, yang memiliki fungsi dalam tanda akar baik fungsi di ruas kiri, fungsi di ruas kanan atau di kedua ruasnya. Pertidaksamaan irasional terdefinisi jika syarat-syaratnya terpenuhi yaitu jika fungsi dalam akar besarnya lebih besar atau sama dengan nol.


1. Nilai x yang memenuhi Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990adalah...

Pembahasan :
kuadratkan kedua ruas



x + 5 < 9
x < 9 - 5
x < 4

syarat :
x + 5 ≥ 0
x ≥ - 5

Maka nilai x yang memenuhi adalah -5 ≤ x < 4

2. Nilai x yang memenuhi Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah...

Pembahasan : 
kuadratkan kedua ruas 
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990



2x - 1 > 25
2x > 25 + 1
2x > 26
x > 13

syarat :
2x - 1  0
2x  1
  x  1/2

Maka nilai x yang memenuhi adalah x > 13

3. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah.....

Pembahasan :
kedua ruas dikuadratkan menjadi
4 - 3x ≥ x²
x² - 3x + 4 ≥ 0 (kalikan dengan -1)
x² + 3x - 4 ≤ 0
(x + 4) (x - 1) ≤ 0

pembuat nol
x + 4=0, x=-4
x - 1=0, x=1
interval x ≤ -4, -4 ≤ x ≤ 1, x  1

untuk interval -4 ≤ x ≤ 1, titik uji 0
0² + 3(0) - 4=-4 (negatif)
maka
≤ -4 positif
-4 ≤ x ≤ 1 negatif
 x  1 positif
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
syarat :
4 - 3x ≥ 0
   - 3x ≥ - 4
       x ≤ 4/3
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990









HP={x| ≤ -4  atau 1 ≤ x ≤ 4/3}

4. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....
Pembahasan :
Kuadratkan kedua ruas
x + 5 > x² - 2x + 1
x + 5 - x² + 2x - 1 > 0
- x² + 3x + 4 > 0
x² - 3x - 4 > 0
(x + 1) (x - 4) > 0

Pembuat nol
x + 1=0, x=-1
x - 4=0, x=4
interval x < -1, -1 < x < 4, x > 4

untuk -1 < x < 4, titik uji 0
0² - 3(0) - 4=-4 (negatif)
maka
x < -1 positif
-1 < x < 4 negatif 
x > 4 positif
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
syarat :
x + 5 ≥ 0
≥  -5
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| -5 ≤ x < -1 atau x > 4

5. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....
Pembahasan :
pindahkan x ke ruas kanan lalu kuadratkan kedua ruas
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990< x + 1
3x + 7 < x² + 2x + 1
3x + 7 - x² - 2x - 1 < 0
x² + x + 6 < 0 dikali -1, tanda berbalik arah
x² - x - 6 > 0

pembuat nol
x² - x - 6=0
(x + 2) (x - 3)=0
x=-2, x=3
interval x < -2, -2 < x < 3, x > 3

untuk -2 < x < 3 titik uji 0
0² - 0 - 6=negatif, maka
x < -2 positif
x > 3 positif
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
syarat :
3x + 7 ≥ 0
3x ≥ -7
x  ≥ -7/3
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| -7/3 ≤ x < -2 atau x > 3}

6. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :
kuadratkan kedua ruas
x - 1 ≤ x² - 6x + 9
x - 1 - x² + 6x - 9 ≤ 0 
- x² + 7x - 10 ≤ 0
 x² - 7x + 10 ≥ 0

pembuat nol
x² - 7x + 10=0
(x - 2) (x - 5)=0
x=2, x=5
interval  x ≤ 2, 2 ≤ x ≤ 5, x  5

untuk ≤ 2 titik uji 0
0² - 0x + 10=10 (positif), maka
≤ x ≤ 5 negatif
 5 positif
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
syarat :
x - 1  0
  1
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| 1 ≤ x ≤ 2 atau x ≥ 5}

7. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :

x² - 7x + 10 < 4
x² - 7x + 10 - 4 < 0
x² - 7x + 6 < 0

pembuat nol
x² - 7x + 6=0
(x - 1) (x - 6)=0
x=1, x=6
interval x < 1, 1 < x < 6, x > 6

untuk x < 1 titik uji 0
0² - 7(0) + 6=6 (positif), maka
1 < x < 6 negatif 
x > 6 positif
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
syarat : 
x² - 7x + 10 ≥ 0

pembuat nol
x² - 7x + 10=0
(x - 2) (x - 5)=0
x=2, x=5
interval x ≤ 2, 2 ≤ x ≤ 5, x ≥ 5

untuk ≤ 2 titik uji 0
0² - 7(0) + 10=10 (positif), maka
2 ≤ x ≤ 5 negatif
x ≥ 5 positif
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

kedua garis bilangan digabung lalu tentukan irisannya
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| -1 < x  2 atau 5 ≤ x < 6}

8. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....
Pembahasan :

x² + 6x - 7 < 9
x² + 6x - 7 - 9 < 0
x² + 6x - 16 < 0

pembuat nol
x² + 6x - 16=0
(x + 8) (x - 2)=0
x=-8, x=2
interval x < -8, -8 < x < 2, x > 2

untuk -8 < x < 2 titik uji 00² + 6(0) - 16=- 16 (negatif), maka
x < -8 positif
x > 2 positif
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
syarat :
x² + 6x - 7 ≥ 0

pembuat nol
x² + 6x - 7=0
(x + 7) (x - 1)=0
x=-7, x=1
interval x ≤ -7, -7 ≤ x ≤ 1, x ≥ 1
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
untuk -7 ≤ x ≤ 1 titik uji 0
0² + 6(0) - 7=-7 (negatif), maka
≤ -7 positif
x ≥ 1 positif

kedua garis bilangan digabung lalu tentukan irisannya
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP= {x| -8 < x  -7 atau 1 ≤ x < 2}

9. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah.....

Pembahasan :
syarat 1 :
kuadratkan kedua ruas
3x + 2 < x + 6
3x - x < 6 - 2
2x < 4
x < 2

syarat 2 :
3x + 2  0
3x  -2
 -2/3

syarat 3 :
x + 6  0
 -6
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| -2/3 ≤ x < 2}

10. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah.....

Pembahasan : 
syarat 1 :
kuadratkan kedua ruas
2x - 5 > 4 - x
2x + x > 4 + 5
3x > 9
x > 3

syarat 2 :
2x - 5 ≥ 0
2x ≥ 5
≥ 5/2

syarat 3 :
4 - x ≥ 0
  -x  -4
   x ≤ 4
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| 3 < x  4}

11. Himpunan penyelesaian dari 
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990adalah...

Pembahasan :
syarat 1 :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990> 2 - Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 (kuadratkan kedua ruas)
6 - x  > 4 - 4Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 + x + 4
4Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 > 8 + x - 6 + x
4Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 > 2 + 2x
2Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 > x + 1 
4 (x + 4) > x² + 2x + 1
4x + 16 - x² - 2x - 1> 0
-x² + 2x + 15 > 0
x² - 2x - 15 < 0

pembuat nol
x² - 2x - 15=0
(x + 3) (x - 5)=0
x=-3, x=5
interval x < -3, -3 < x < 5, x > 5

untuk -3 < x < 5 titik uji 0
0² - 2(0) - 15=-15 (negatif)
x < -3 positif
x > 5 positif
Tanda ketidaksamaan < 0, daerah yang memenuhi -3 < x < 5

syarat 2 :
6 - x ≥ 0
- x ≥ - 6
x ≤ 6

syarat 3 :
x + 4 ≥ 0
x ≥ - 4
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| -5 < x < 3}

12. Nilai x yang memenuhi Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :
syarat 1
3x + 7 ≥ 0
3x ≥ - 7
≥ -7/3

syarat 2 :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
1 < 3x + 7
-3x < 7 - 1
-3x < 6
x > -2

syarat 3 :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
3x + 7 < 4
3x < 4 - 7
3x < - 3
x < -1
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

HP={x| -2 < x < -1}

13. Nilai x yang memenuhi Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :

syarat 1 :
x² + 2x < 5x
x² - 3x < 0

pembuat nol
x² - 3x=0
x (x - 3)=0
x=0, x=3
interval x < 0, 0 < x < 3, x > 3

untuk 0 < x < 3 titik uji 1
1² - 3(1)=-2 (negatif)
x < 0 positif
x > 3 positif
Tanda ketidaksamaan < 0, daerah yang memenuhi 0 < x < 3

syarat 2 :
x² + 2x ≥ 0

pembuat nol
x² + 2x=0
x (x + 2)=0
x=0, x=-2
interval x ≤ -2, -2 ≤ x ≤ 0, x ≥ 0

untuk ≥ 0 titik uji 1
1² + 2(1)=3 positif
≤ -2 positif
-2 ≤ x ≤ 0 negatif
Tanda ketidaksamaan ≥ 0, daerah yang memenuhi ≤ -2 atau ≥ 0 


syarat 3 :
5x ≥ 0
≥ 0
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

HP={x| 0 < x < 3}

14. Nilai x yang memenuhi Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990  adalah....

Pembahasan :
syarat 1:
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 < x - 3
4x < x² - 6x + 9
0 < x² - 10x + 9
x² - 10x + 9 > 0

pembuat nol
x² - 10x + 9=0
(x - 1) (x - 9)=0
x=1, x=9
interval x < 1, 1 < x < 9, x > 9

untuk x < 1 titik uji 0
0² - 10(0) + 9=9 (positif)
1 < x < 9 negatif
x > 9 positif
Tanda ketidaksamaan > 0, daerah yang memenuhi x < 1 atau x > 9

syarat 2:
4x ≥ 0
≥ 0
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

HP={x| 0 ≤ x < 1 atau x > 9}

15. Nilai x yang memenuhi Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :

syarat 1 :
x² - x - 2 ≥ 0

pembuat nol
x² - x - 2=0
(x - 2) (x + 1)=0
x=2, x=-1
interval x ≤ -1, -1 ≤ x ≤ 2, x ≥ 2

untuk -1 ≤ x ≤ 2 titik uji 0
0² - 0 - 2=- 2 (negatif)
x ≤ -1 positif
≥ 2 positif
Tanda ketidaksamaan  ≥ 0, daerah yang memenuhi x ≤ -1 atau ≥ 2

syarat 2:
x² + 5x + 6 ≥ 0

pembuat nol
x² + 5x + 6=0
(x + 3) (x + 2)=0
x=-3, x=-2
interval x ≤ -3, -3 ≤ x ≤ -2, x ≥ -2

untuk ≥ -2 titik uji 0
0² + 5(0) + 6=6 (positif)
≤ -3 positif
-3 ≤ x ≤ -2 negatif
Tanda ketidaksamaan  ≥ 0, daerah yang memenuhi x ≤ -3 atau ≥ -2

syarat 3:
x² - x - 2 < x² + 5x + 6
  - x - 5x < 6 + 2
  - 6x   < 8
      x > -4/3
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

HP={x| -4/3 < x ≤ -1 atau x ≥ 2}

16. Nilai x yang memenuhi Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :
syarat 1 :

2x² + x - 6 ≥ 0

pembuat nol 
2x² + x - 6=0
(2x - 3) (x + 2)=0
x=3/2, x=-2
interval x ≤ -2, -2 ≤ x ≤ 3/2, x ≥ 3/2

untuk -2 ≤ x ≤ 3/2 titik uji 0
2(0)² + 0 - 6=- 6 (negatif)
x ≤ -2 positif
≥ 3/2 positif

Tanda ketidaksamaan  ≥ 0, daerah yang memenuhi x ≤ -2 atau ≥ 3/2

syarat 2:

x² + x ≥ 0

pembuat nol
x(x+1)=0
x=0, x=-1
interval x ≤ -1, -1 ≤ x ≤ 0, x ≥ 0

untuk ≥ 0 titik uji 1
1² + 1=2 (positif)
x ≤ -1 positif
-1 ≤ x ≤ 0 negatif

Tanda ketidaksamaan  ≥ 0, daerah yang memenuhi x ≤ -1 atau ≥ 0

syarat 3 :
2x² + x - 6 < x² + x
x² - 6 < 0

pembuat nol
x² - 6=0
(x + √6) (x - √6)=0
x=-√6, x=√6
interval x < -√6, -√6 < x < √6, x > √6

untuk -√6 ≤ x ≤ √6 titik uji 0
0² - 6=-6 (negatif)
x < -√6 positif
x > √6 positif

Tanda ketidaksamaan < 0, daerah yang memenuhi -√6 < x < √6
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| -√6 < x ≤ -2 atau 3/2 ≤ x < √6}

17. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :
syarat 1 :
2x + 8 ≥ 0
2x ≥ - 8
≥ -4

syarat 2 :
kuadratkan kedua ruas
x² > 2x + 8
x² - 2x - 8 > 0

pembuat nol 
x² - 2x - 8=0
(x + 2) (x - 4)=0
x=-2, x=4
interval x < -2, -2 < x < 4, x > 4

untuk -2 < x < 4 titik uji 0
0² - 2(0) - 8=-8 (negatif)
x < -2 positif
x > 4 positif
Tanda ketidaksamaan  > 0, daerah yang memenuhi x < -2 atau x > 4
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

HP={x| -4 ≤ x < -2 atau x > 4}

18. Himpunan penyelesaian dari √x + 2 < x  adalah....

Penyelesaian : 

syarat 1 :
≥ 0

syarat 2 :
√x < x - 2
x < x² - 4x + 4
0 < x² - 5x + 4
x² - 5x + 4 > 0

pembuat nol
x² - 5x + 4=0
(x - 1) (x - 4)=0
x=1, x=4
interval x < 1, 1 < x < 4, x > 4

untuk x < 1 titik uji 0
0² - 5(0) + 4=4 (positif) 
1 < x < 4 negatif
x > 4 positif
Tanda ketidaksamaan  > 0, daerah yang memenuhi x < 1 atau x > 4
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

HP={x| -4 ≤ x < -2 atau x > 4}

19. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :
syarat 1 : 
x² - 4 ≥ 0

pembuat nol
x² - 4=0
(x + 2) (x - 2)=0
x=-2, x=2
interval ≤ -2, -2 ≤ x ≤ 2, x ≥ 2

untuk -2 ≤ x ≤ 2 titik uji 0
0² - 4=-4 (negatif)
x ≤ -2 positif
≥ 2 positif

Tanda ketidaksamaan ≥ 0, daerah yang memenuhi x ≤ -2 atau ≥ 2

syarat 2:
x² - 4 < 4
x² - 8 < 0

pembuat nol
x² - 8=0
(x + 2√2)(x - 2√2)=0
x=-2√2, x=2√2
interval x < -2√2, -2√2 < x < 2√2, x > 2√2

untuk -2√2 < x < 2√2 titik uji 0
0² - 8=-8 (negatif
x < - 2√2 positif
x > 2√2 positif
Tanda ketidaksamaan x < 0, daerah yang memenuhi 2√2 < x < 2√2 
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
HP={x| -2√2 < x ≤ -2 atau 2 ≤ x < 2√2}

20. Himpunan penyelesaian dari Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990 adalah....

Pembahasan :

syarat 1 :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

pembuat nol
x + 3=0, x=-3
x - 1=0, x=1
interval x ≤ -3, -3 ≤ x ≤ 1, x ≥ 1

untuk -3 ≤ x ≤ 1, titik uji 0
(0+3) : (0-1)=3/-1=-3 (negatif)
x ≤ -3 positif
≥ 1 positif
Tanda ketidaksamaan  ≥ 0, daerah yang memenuhi x ≤ -3 atau ≥ 1

syarat 2 :
≥ 0

syarat 3 :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990
pembuat nol
x - 3=0, x=3
x + 1=0, x=-1
x - 1=0, x=1
interval x ≤ -1, -1 ≤ x ≤ 1, 1 ≤ x ≤3, x ≥ 3

untuk x ≤ -1, titik uji -2
(-2-3) (-2+1) : (-2-1)=(-5)(-1):(-3)=5/-3 (negatif)
-1 ≤ x ≤ 1 positif
≤ x ≤ 3 negatif
≥ 3 positif
Tanda ketidaksamaan   0, daerah yang memenuhi  -1 ≤ x ≤ 1 atau ≥ 3
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

HP={x| x ≥ 3}




SEMOGA BERMANFAAT

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990



https://www.radarhot.com/2020/08/soal-pertidaksamaan-irasional.html


Komentar

Peta Bimbel Jakarta Timur

 
Use the Cookies: Kami menggunakan cookie untuk memastikan bahwa kami memberi anda pengalaman terbaik di situs web kami clicking on more information